# Bottom-up naturalness

Sonia El Hedri

with

Anson Hook

October 31, 2013

arXiv:1305.6608

### The hierarchy problem

- ► The Higgs mass in the SM is not protected by symmetries
- One loop contributions quadratically divergent (top, gauge)
- Mass corrections of order the cutoff scale Λ<sup>2</sup>
- ▶ New physics at the TeV scale



$$\propto +m_V^2 \Lambda^2$$

### Traditional approaches

#### Top down approaches

Assuming a high energy mechanism which cancels the divergences at all loop levels

- SUSY
- Extra dimensions
- Little Higgs
- **>**

### Traditional approaches

New particles running in loops



Cancellation terms give new signatures



### Traditional approaches

But dominant signatures from other terms



Model dependent

Not directly related to the quadratic divergences

### Bottom up approach?

#### Study low energy signatures of naturalness

- ⇒ Cancellation at one loop only
- ⇒ No complete model

#### But

- ⇒ Necessary conditions for naturalness
- ⇒ Model independent approach
- ⇒ Hints for new complete theories?
- ⇒ Limited number of simplified models

### Minimal naturalness

#### Naturalness is enforced by



- Find all possible  $\psi$
- For each  $\psi$ , look for signatures which vanish when y or  $\lambda$  vanishes

# The trilinear term

## Properties of $\psi_1$ , $\psi_2$

$$\mathcal{L} = yH\psi_1\psi_2 \qquad \qquad --\sqrt{y^2\Lambda^2}$$

- $\psi_1$  and  $\psi_2$  are fermions
- ► Negative one loop contribution
- $\psi_1$  and/or  $\psi_2$  charged under **at least** SU(2)

### Trilinear term – $\psi_1$ and $\psi_2$ non SM

- ▶ If no other term,  $\psi_1$  or  $\psi_2$  stable
- ► Electroweakino-like phenomenology



- Decays to Higgs and gauge bosons
- $\blacktriangleright \not \! E_T$ , CHAMPs, R-hadrons...



### Trilinear term – $\psi_1$ is SM

- $\blacktriangleright$   $\psi_2$  has the same quantum number as a SM particle
- ▶ Fourth generation of quarks or leptons



Electroweak/strong production



Associated production  $\propto y^2$ 



Decay to W, Z, h  $\propto v^2$ 

$$\mathcal{L}_{2} = \lambda H^{\dagger} H \psi^{\dagger} \psi$$

$$\supset \lambda v h \psi^{\dagger} \psi + \frac{\lambda}{2} h^{2} \psi^{\dagger} \psi$$



Vector-like fermion

- New Higgs decay modes
- lacktriangledown  $\psi$  is a dark matter particle
- $ightharpoonup \psi$  gets a vev
- lacksquare  $\psi$  is charged under the SM

$$\mathcal{L}_{2} = \lambda H^{\dagger} H \psi^{\dagger} \psi$$

$$\supset \frac{\lambda v h \psi^{\dagger} \psi}{2} + \frac{\lambda}{2} h^{2} \psi^{\dagger} \psi$$



- New Higgs decay modes
- lacksquare  $\psi$  is a dark matter particle
- $ightharpoonup \psi$  gets a vev
- lacksquare  $\psi$  is charged under the SM

# Higgs decays to $\psi^\dagger \psi$



#### ATLAS-CONF-2013-011



- Invisible decay modes
- ► Top and gauge divergences ⇒ Excluded
- ightharpoonup Other divergences  $\Rightarrow$  Effect too small

$$\mathcal{L}_{2} = \lambda H^{\dagger} H \psi^{\dagger} \psi$$

$$\supset \lambda v h \psi^{\dagger} \psi + \frac{\lambda}{2} h^{2} \psi^{\dagger} \psi$$



- New Higgs decay modes
- lacksquare  $\psi$  is a dark matter particle
- $ightharpoonup \psi$  gets a vev
- lacksquare  $\psi$  is charged under the SM

### $\psi$ is dark matter

Assuming interactions with the SM only through the quartic

Direct detection



Spin independent interactions Higgs portal only



 $\psi\psi 
ightarrow$  hh, WW, ZZ

### Relic abundance



Non thermal production

### Indirect detection

$$\lambda \psi^\dagger \psi H^\dagger H \supset \frac{\lambda}{2} \psi^\dagger \psi h h + \lambda \psi^\dagger \psi \psi^+ \psi^-$$

$$\begin{array}{ccc} \psi^\dagger \psi & \to hh \to {\rm bottoms} \\ \psi^\dagger \psi & \to W^+W^- \end{array} \right\} \to {\rm pions} \to {\rm photons}$$

► Large mass/Low velocity annihilation cross sections

$$\langle \sigma_{\mathrm{fermion}} v \rangle_{v=0} = 0$$
  
 $\langle \sigma_{\mathrm{scalar}} v \rangle_{v=0} = \frac{9y_t^4}{16\pi m_{\psi}^2}, \frac{9g^4}{16\pi m_{\psi}^2}, \dots$ 

### Indirect detection



- ▶ No top quadratic divergences cancellation
- ▶ Gauge cancellation possible for  $m_{\psi} > 500\,\mathrm{GeV}$

### Direct detection

$$\lambda \psi^{\dagger} \psi H^{\dagger} H \supset \lambda v \, h \, \psi^{\dagger} \psi$$

$$\sigma_{\text{SI}} = \frac{a}{\pi} \frac{m_p^2}{(m_\psi + m_p)^2} \frac{9y_t^4 m_p^2}{m_h^4} f^2$$

$$f = \frac{6}{27} + \frac{21}{27} (f_{Tu} + f_{Td} + f_{Ts})$$

$$a = \begin{cases} 4 & \text{real scalar} \\ 1 & \text{complex scalar} \\ & \text{majorana fermion} \\ \frac{1}{4} & \text{dirac fermion} \end{cases}$$



$$a = egin{cases} 4 & ext{real scalar} \ 1 & ext{complex scalar} \ & ext{majorana fermion} \ rac{1}{4} & ext{dirac fermion} \end{cases}$$

### Direct detection



► Top and gauge cancellation excluded

### $\psi$ dark matter

Correlated direct and indirect detection signatures

- If fermion, direct detection signature but no indirect detection signal
- If scalar,

$$\frac{\sigma_{\rm SI}}{\langle \sigma v \rangle_{v=0}} = \frac{16 f^2 m_p^2}{m_h^4} = 1.5 \times 10^{-19} \frac{{\rm cm}^2}{{\rm cm}^3/{\rm s}}$$

Measurable at FERMI, XENON100, LUX

Sub-TeV  $\psi$  cannot cancel the top quadratic divergences Small region still left for gauge quadratic divergences

$$\begin{split} \mathcal{L}_2 &= \lambda H^\dagger H \psi^\dagger \psi \\ &\supset \lambda v h \psi^\dagger \psi + \frac{\lambda}{2} h^2 \psi^\dagger \psi \end{split}$$



Vector-like fermion

- New Higgs decay modes
- $\blacktriangleright$   $\psi$  is a dark matter particle
- $ightharpoonup \psi$  gets a vev
- lacksquare  $\psi$  is charged under the SM

### Scalar with a vev

$$\mathcal{L} = \lambda v v_{\psi} h \psi + rac{\lambda}{2} v_{\psi} \psi h h + rac{\lambda}{2} v h \psi \psi + \dots$$

- Mixing with the Higgs
- $\blacktriangleright \psi$  decays
- h decays (already studied)

If  $\psi$  is an SU(2) doublet  $\Rightarrow$  two Higgs doublet model What about a singlet?

## Singlet $\psi$ with a vev

$$\mathcal{L} \supset \frac{\lambda}{2} v_{\psi} v h \psi \quad \Rightarrow \quad \begin{pmatrix} h_{m} \\ \psi_{m} \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h \\ \psi \end{pmatrix}$$

Higgs couplings uniformely suppressed

$$\sigma_{\rm prod}^{\it H} = \cos^2\alpha\,\sigma_{\rm SM}^{\it H}$$

$$\mathrm{Br}(h \to AB) = \mathrm{Br}_{\mathrm{SM}}(h \to AB)$$

## Singlet $\psi$ with a vev

#### ATLAS-CONF-2013-034



### Heavy $\psi$ with a vev

If 
$$m_{\psi} \geq 2m_{h,W,Z}$$

$$\lambda \psi^{\dagger} \psi H^{\dagger} H \supset \lambda v_{\psi} \psi h^{\dagger} h$$

$$\psi 
ightarrow egin{cases} hh & 25\% \ ZZ & 25\% & ext{for large } m_{\psi} \ W^+W^- & 50\% \end{cases}$$

▶ Heavy Higgs search  $H \rightarrow ZZ \rightarrow IIII$  most sensitive

$$\mathrm{Br}_{\mathrm{SM}}(H o ZZ) \sim 30\%$$

## Heavy $\psi$ with a vev

#### ATLAS-CONF-2013-013



$$\mu \sim rac{\sigma_{
m prod}^{\psi}}{\sigma_{
m SM}^{H}} \sim \sin^2 lpha$$

Best bounds

 $\sin^2 \alpha \leq 10\%$ 

Very specific masses

#### Scalar with a vev

- Mass mixing with the SM Higgs
- lacktriangle If  $\psi$  is a singlet,  $\cos \alpha$  suppression of the SM Higgs couplings

$$\cos \alpha > 0.93$$

- ▶ If  $m_{\psi} > 2m_{h,W,Z}$ , decays to hh,  $W^+W^-$  and ZZ
- Bounds from heavy Higgs searches less competitive than precision Higgs physics
- For our minimal model, top cancellation requires

$$v_{\psi} > 2 \, {\sf TeV}$$

$$\mathcal{L}_{2} = \lambda H^{\dagger} H \psi^{\dagger} \psi$$

$$\supset \frac{\lambda v h \psi^{\dagger} \psi}{2} + \frac{\lambda}{2} h^{2} \psi^{\dagger} \psi$$



Vector-like fermion

- New Higgs decay modes
- $\blacktriangleright$   $\psi$  is a dark matter particle
- ψ gets a vev
- lacksquare  $\psi$  is charged under the SM

## $\psi$ charged under the SM

$$\mathcal{L} \supset \lambda h \psi^\dagger \psi + \mathsf{g}_\mathcal{G} V_\mathcal{G}^\mu \gamma_\mu \psi^\dagger \psi$$



One loop Higgs couplings to gauge bosons modified

SU(3) production, not visible SU(2) decay, hard to reach at the LHC

 $U(1)_{
m EM}$  decay, high luminosity LHC

## Example: electrically charged $\psi$

 $\psi$  has electric charge  $\emph{Q}$  and cancels the top quadratic divergences

$$\mathcal{L}\supset -m\psi^\dagger\psi+rac{3y_t^2}{2m}\psi^\dagger\psi hh$$

$$\frac{\Gamma(h \to \gamma \gamma)}{\Gamma_{\rm SM}(h \to \gamma \gamma)} = \left| 1 + \frac{Q^2}{6.49} \frac{4}{3} \frac{\partial \log m_{\psi}}{\partial \log v} \left( 1 + \frac{7m_h^2}{120m_{\psi}^2} \right) \right|^2$$

## Example: electrically charged $\psi$



Less than 10% modifications at high mass

### Quartic term: summary

$$\lambda \psi^\dagger \psi H^\dagger H \supset \begin{cases} \lambda \mathsf{vh} \psi^\dagger \psi + \frac{\lambda}{2} \mathsf{hh} \psi^\dagger \psi \\ \frac{\lambda}{2} \mathsf{vv}_\psi \mathsf{h} \psi + \lambda \mathsf{vh} \psi^\dagger \psi + \lambda \mathsf{v}_\psi \psi \mathsf{hh} \end{cases}$$

- $\blacktriangleright \psi$  light
  - Invisible Higgs decays
  - Cannot cancel top and gauge quadratic divergences
- $\blacktriangleright \psi$  dark matter
  - Correlated direct and indirect detection signatures
  - Strong constraints on top and gauge divergences cancellation
- lacksquare  $\psi$  scalar with a vev
  - Precision Higgs coupling measurements
  - ▶ Tight constraints on  $v_{\psi}$
- lacktriangledown  $\psi$  charged under the SM
  - ▶ One loop contributions to  $h \rightarrow VV$
  - Modifications too small to observe with current searches

### Current prospects

- Strong constraints in specific cases for top and gauge cancellation (dark matter, light particle, etc...)
- ▶ In most cases, precision Higgs measurements are needed

Most minimal signatures cannot be observed with current experiments!

Can some simple extensions be probed at the LHC?

# Finding minimal extensions

Minimal naturalness – Quartic term extension

$$\mathcal{L} = \mathcal{L}_{SM} + \lambda H^{\dagger} H \psi^{\dagger} \psi$$

Find additional terms:

- ▶ IR effect
- No assumptions about the UV physics
- ▶ New decay modes for  $\psi$ , new LHC signatures
- ▶ Signatures vanish when  $\lambda \to 0$

## Mass mixing

#### Only possible term

$$\mathcal{L} \supset m_0 \psi^{\dagger} \psi_{\mathrm{NEW}}$$



$$\psi_{\rm NEW} \left\{ \begin{array}{l} {\rm Higgs\ boson} \Rightarrow {\rm 2HDM} \\ {\rm Stable\ new\ particle} \ \Rightarrow \not\!\!E_T,\ {\rm CHAMPs,\ R-hadrons} \\ {\rm SM\ fermion} \end{array} \right.$$

# Mass mixing

$$\mathcal{L} \supset \lambda_1 \psi^\dagger \psi H^\dagger H + \lambda_2 \psi^\dagger \psi_{\mathrm{NEW}} H^\dagger H$$

- Measuring  $\lambda_2$ 
  - $\Rightarrow$  **Indirect** evidence of  $\lambda_1$
- ▶ Three-body decays to  $\psi_{\text{NEW}}$ , WW, hh and ZZ
- lacktriangle Two-body decay to  $\psi_{
  m NEW}$  and h
- ▶ NO two-body decays to gauge bosons

## Example: Little Higgs model

Fermionic top partner

$$\mathcal{L} = m_{\psi}\psi\psi^{c} + \lambda_{1}\psi^{c}HQ + \lambda_{2}u^{c}HQ + \frac{\lambda_{3}}{m_{\psi}}\psi\psi^{c}H^{\dagger}H$$

In mass basis

$$\mathcal{L} = m_T T T^c + \lambda_T T^c H Q + y_t u^c H Q$$
$$+ \frac{\lambda_{TT}}{m_T} T^c T H^{\dagger} H + \frac{\lambda_{tT}}{m_T} u^c T H^{\dagger} H$$

 $ightharpoonup \lambda_{tT}$  generated by  $\lambda_{TT}$  and mass mixing

# Example: Little Higgs model

$$\mathcal{L} \supset \lambda_T T^c HQ + rac{\lambda_{tT}}{m_T} u^c T H^\dagger H$$

- ► Two-body decays from trilinear + quartic terms
- $\triangleright$   $\lambda_T$  usually expected to dominate
- But two-body signatures dominantly from quartic if

$$\lambda_{tT} > \lambda_T \frac{m_T}{v}$$

Little Higgs is a good example for large quartic and moderate  $m_T$ 

## T decay modes



 $T \rightarrow tH$  largely dominating

#### Vector-like fermions at the LHC

$$\mathcal{L} \supset \lambda \psi \psi_{\text{NEW}} H^{\dagger} H \supset \lambda_1 \psi \psi_{\text{NEW}} h$$

- ▶ Choose  $\psi_{NEW}$  SM fermion
- Consider only two-body decays
- Derive bounds for top quark, light quark and lepton partners

$$T \rightarrow t + h$$
  
 $U \rightarrow u + h$   
 $L \rightarrow l + h$ 

#### Top quark partners

- ATLAS-CONF-2013-018
- ▶ 8 TeV, 14.3fb<sup>-1</sup>



▶  $Br(T \rightarrow th) = 100\% \Rightarrow m_T > 850 \, GeV$ 

## Light quark partner

- hhjj final state
- No rapidity gap between the two jets
- ▶ Low branching ratio to leptons + low lepton ID efficiency
- $h \rightarrow \gamma \gamma$  search does not veto on extra jets
- lacktriangle Current bounds on  $\gamma\gamma$  allow up to  $10\,\mathrm{pb}$  signal

$$m_U > 300 \,\mathrm{GeV}$$

#### Lepton partner

- $\triangleright$   $I^+I^-hh$  final state
- ▶  $I^+I^- + 2b$  dominant but existing searches require an on-shell Z
- ▶ 4-lepton events from  $h \to W^+W^-, \tau\tau$
- ATLAS-CONF-2013-036
- ▶ 4-leptons + effective mass cut
- ► Low background, high signal efficiency

#### Lepton partner



Low production cross section  $\Rightarrow$  no exclusion bounds

#### Summary

- Two possible operators to cancel one-loop divergences
- ▶ Bottom-up approach: study signatures which vanish when these operators vanish
- New Yukawa term ⇒ electroweakino phenomenology, CHAMPs, R-hadrons
- Quartic term
  - Correlated dark matter detection signatures
  - Higgs precision measurements
- Mass mixing with a SM fermion gives new decay modes
- Only one two-body decay mode to SM fermion + Higgs
- Strong bounds on top partners at the LHC, high luminosity + dedicated searches needed for the other particles

# Goldstone boson equivalence theorem



$$|M(T o thh)|^2 \sim rac{\lambda^2}{2} p_{T,\mu} p_t^{\mu}$$
  $|M(T o tW^+W^-)|^2 \sim 4\lambda^2 m_W^4 p_{T,\mu} p_t^{\mu} rac{1}{((p_T - p_t)^2 - m_h^2)^2} rac{(p_{W^+} \cdot p_{W^-})^2}{m_W^4}$ 

## Little Higgs model

$$\Sigma = \exp\left(\frac{\textit{i}}{\textit{f}} \begin{pmatrix} 0 & \textit{H} \\ \textit{H}^{\dagger} & 0 \end{pmatrix}\right) \begin{pmatrix} 0 \\ \textit{f} \end{pmatrix}$$

After symmetry breaking

$$\mathcal{L} \supset \lambda_1 u_3^c \Sigma \chi + \lambda_2 f u'^c u'$$

At lowest order

$$\mathcal{L} \supset f(\lambda_1 u_3^3 + \lambda_2 u'^c) u' - \lambda_1 u_3^c H Q_3 + \frac{\lambda_1}{2f} H H^{\dagger} u_3^c u'$$

#### Little Higgs model

After diagonalization

$$\mathcal{L}\supset rac{\lambda_1\lambda_2}{\sqrt{\lambda_1^2+\lambda_2^2}}t_3^cHQ_3+rac{\lambda_1^2}{\sqrt{\lambda_1^2+\lambda_2^2}}T^cHQ_3+rac{\lambda_1^2}{2m_T}HH^\dagger T^cT+rac{\lambda_1\lambda_2}{2m_T}HH^\dagger t_3^cT$$

Two body decays from the quartic term dominate if

$$\frac{\lambda_2^2 v}{\sqrt{2} y m_T} \gg 1$$